Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yu Liu,^a Duan-Jun Xu,^a* Jing-Yun Wu^b and Michael Y. Chiang^b

^aDepartment of Chemistry, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China, and ^bDepartment of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.007 Å R factor = 0.025 wR factor = 0.066 Data-to-parameter ratio = 16.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Redetermination of bis(2,2'-bipyridine- $\kappa^2 N, N'$)-iodocopper(II) iodide

The crystal structure of the title complex, $[CuI(C_{20}H_{16}N_4)]I$, was first determined and reported by Barclay *et al.* [*J. Chem. Soc.* (1963), pp. 5691–5699]. We present here a redetermination, of greatly improved precision, in which the H-atom positions have been located.

Received 8 November 2002 Accepted 14 November 2002 Online 22 November 2002

Comment

The structure of the title compound, (I), consists of Cu^{II} complex cations and iodide anions. The Cu^{II} atom has a compressed trigonal-bipyramidal coordination geometry. The Cu–N bonds [1.980 (3) and 1.981 (3) Å] in the axial directions are significantly shorter than the Cu–N bonds [2.092 (3) and 2.089 (3) Å] in the equatorial plane. The C···I2 distance of 3.833 (5) Å and the C5–H5–I2 angle of 144° suggest weak C–H···I hydrogen bonding between the iodide ion and the pyridine ring. Separations of 3.308 (15) Å and 3.377 (5) Å between parallel bipyridine planes indicate significant π - π stacking. A rather short C···C contact of 3.190 (7) Å is observed between neighboring molecules in the crystal.

Experimental

A solution of dimethylformamide (10 ml) and methanol (5 ml) containing CuI (0.19 g, 1 mmol) and 2,2'-bipyridine (0.16 g, 1 mmol) was refluxed, under atmospheric pressure, for 2 h. After two weeks, dark-brown single crystals of the title compound, (I), were obtained from the green filtrate.

Crystal data	
$[CuI(C_{20}H_{16}N_4)]I$	Z = 2
$M_r = 629.71$	$D_x = 2.015 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 10.5450 (16) Å	Cell parameters from 18
b = 14.299 (3) Å	reflections
c = 7.4229 (6) Å	$\theta = 4.2 - 11.0^{\circ}$
$\alpha = 95.445 \ (10)^{\circ}$	$\mu = 4.04 \text{ mm}^{-1}$
$\beta = 98.780 \ (9)^{\circ}$	T = 298 (2) K
$\gamma = 108.300 \ (14)^{\circ}$	Prism, dark brown
V = 1038.0 (3) Å ³	$0.20 \times 0.16 \times 0.10$ mm

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Data collection

Rigaku AFC-7*S* diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.446, T_{max} = 0.668$ 4307 measured reflections 4074 independent reflections 2818 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.066$ S = 1.014074 reflections 244 parameters H-atom parameters constrained $l = -9 \rightarrow 9$ 3 standard reflections every 150 reflections intensity decay: 0.5% $w = 1/[\sigma^2(F_o^2) + (0.0221P)^2 + 0.5203P]$

 $R_{\rm int} = 0.013$

 $\theta_{\max} = 26.0^{\circ}$ $h = 0 \rightarrow 12$

 $k=-17 \rightarrow 16$

where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.66 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, $^{\circ}$).

I1-Cu	2.6765 (6)	Cu-N4	2.089 (3)
Cu-N1	1.980 (3)	Cu-N2	2.092 (3)
Cu-N3	1.981 (3)		
N1-Cu-N3	174.53 (14)	N4-Cu-N2	113.89 (13)
N1-Cu-N4	99.80 (14)	N1-Cu-I1	90.53 (10)
N3-Cu-N4	80.29 (14)	N3-Cu-I1	94.00 (10)
N1-Cu-N2	80.06 (13)	N4-Cu-I1	123.04 (9)
N3-Cu-N2	94.87 (14)	N2-Cu-I1	123.07 (9)

H atoms were placed in calculated positions, with C–H = 0.93 Å, and included in the final cycles of refinement riding on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}$ of the carrier atoms.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1992); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1985); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (No. 29973036).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Barclay, G. A., Hoskins, B. F. & Kennard, C. H. L. (1963). J. Chem. Soc. pp. 5691–5699.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Molecular Structure Corporation (1985). *TEXSAN*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Version 5.32. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Figure 1

A view of the structure of (I), shown with 30% probability displacement ellipsoids. The dashed line indicates the weak hydrogen bond.

Figure 2

A packing diagram, showing π - π aromatic stacking between neighboring molecules.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.